## **CONCOURS INTERNE POUR LE RECRUTEMENT:**

► d'INGÉNIEURS DES ÉTUDES ET DE L'EXPLOITATION DE L'AVIATION CIVILE (I.E.E.A.C.)

&

► d'INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE (I.C.N.A.)

# ÉPREUVE OBLIGATOIRE MATHEMATIQUES

Durée: 4 heures

IEEAC : Coefficient 4
ICNA : Coefficient 2

# Cette épreuve comporte :

- ⇒ 1 page de garde (recto)
- ⇒ 1 page de consignes (recto)
- → 4 pages de sujet numérotées de 1 à 4 (recto-verso)

TOUT DISPOSITIF ELECTRONIQUE EST INTERDIT (EN PARTICULIER L'USAGE DE LA CALCULATRICE)



### **ÉPREUVE OBLIGATOIRE**

- 1) Vous devez composer lisiblement sur les copies avec un stylo à bille ou feutre à encre foncée bleue ou noire.
- 2) Les effaceurs correcteurs (comme le tippex) sont interdits car ils peuvent laisser des résidus sur les vitres du scanner lors de la numérisation des copies.
- 3) Numéroter chaque page de composition pour faciliter la correction de la copie (il n'est pas nécessaire de numéroter les pages entièrement blanches) dans la zone prévue en bas à droite de chaque copie.

Par exemple, pour la 6<sup>e</sup> page d'une copie comportant 7 pages de composition et une page blanche, numéroter ainsi la page 6 sur 7 :

..6/.7.

- 4) Vous devez composer uniquement sur les supports de composition officiels pour l'épreuve.
- 5) Aucun brouillon ne sera ramassé.





# Problème 1

Dans ce problème, n est un entier naturel supérieur ou égal à 2,  $\mathcal{C}=(e_1,\ldots,e_n)$  désigne la base canonique de  $\mathbb{R}^n$ ,  $M_n(\mathbb{R})$  désigne l'ensemble des matrices carrées à coefficients réels formées de n lignes et  $GL_n(\mathbb{R})$  est le sous-ensemble des matrices inversibles de  $M_n(\mathbb{R})$ . Étant donné un endomorphisme f de  $M_n(\mathbb{R})$ , on dit que :

- f conserve le rang si, pour toute matrice  $X \in M_n(\mathbb{R})$ ,  $\operatorname{rg}(f(X)) = \operatorname{rg}(X)$ .
- f conserve le déterminant lorsque, pour tout  $X \in M_n(\mathbb{R})$ ,  $\det(f(X)) = \det(X)$ .

L'objet de ce problème, développé dans la seconde partie, est d'établir que :

« f conserve le déterminant  $\Rightarrow f$  conserve le rang  $\Rightarrow f$  est bijectif ».

Pour ce faire, la première partie présente différents résultats utiles.

#### Première partie

#### Résultats préliminaires

**Q1.** Soit u l'endomorphisme de  $\mathbb{R}^3$  dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & 1 & -1 \end{pmatrix}.$$

- a) Déterminer une base de l'image de u et une base de son noyau.
- b) On pose a = (1, -2, -1). Montrer que les familles  $\mathcal{B} = (e_1, e_2, a)$  et  $\mathcal{B}' = (u(e_1), u(e_2), e_3)$  sont des bases de  $\mathbb{R}^3$  puis écrire la matrice de u dans les bases  $\mathcal{B}$  (départ) et  $\mathcal{B}'$  (arrivée).
- c) En déduire des matrices inversibles  $P,Q \in GL_3(\mathbb{R})$  telles que  $A = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} Q$ .
- **Q2.** Soient  $A \in M_n(\mathbb{R})$  de rang  $r \in [1, n]$  et  $u_A$  l'endomorphisme canoniquement associé.
- a) Justifier l'existence d'une base  $\mathcal{B} = (\varepsilon_1, ..., \varepsilon_r, \varepsilon_{r+1}, ..., \varepsilon_n)$  de  $\mathbb{R}^n$  telle que  $(\varepsilon_{r+1}, ..., \varepsilon_n)$  soit une base du noyau de  $u_A$ .
- b) On pose  $F=\mathrm{Vect}\{\varepsilon_1,...,\varepsilon_r\}$  et  $v:F\to\mathrm{Im}(u_A)\,,\ x\mapsto v(x)=u_A(x).$  Montrer que v est un isomorphisme d'espaces vectoriels. En déduire que la famille  $(u_A(\varepsilon_1),...,u_A(\varepsilon_r))$  est une base de l'image de  $u_A$ .
- c) Justifier l'existence d'une base  $\mathcal{B}'$  de  $\mathbb{R}^n$  telle que la matrice de  $u_A$  dans les bases  $\mathcal{B}$  et  $\mathcal{B}'$  soit (écriture par blocs) :

$$J_r = \begin{pmatrix} I_r & \mathbf{0}_{r,n-r} \\ \mathbf{0}_{n-r,r} & \mathbf{0}_{n-r,n-r} \end{pmatrix}.$$

(La matrice  $J_r$  est donc composée de r coefficients égaux à 1 situés sur les r premières lignes de la diagonale, les autres coefficients sont nuls.)

d) En déduire qu'il existe des matrices  $P,Q\in GL_n(\mathbb{R})$  telles que  $A=PJ_rQ$ .

- Q3. Soient  $r \in [1, n]$  et  $M_n^{(r)}(\mathbb{R})$  le sous-ensemble de  $M_n(\mathbb{R})$  formé des matrices dont les lignes r+1, r+2, ... jusqu'à n sont nulles (pour r=n,  $M_n^{(r)}(\mathbb{R})=M_n(\mathbb{R})$ ). Montrer que  $M_n^{(r)}(\mathbb{R})$  est un sous-espace vectoriel de  $M_n(\mathbb{R})$  et préciser sa dimension.
- **Q4.** Pour  $A,B\in M_n(\mathbb{R})$ , on pose  $p_{A,B}:\mathbb{R}\to\mathbb{R}$ ,  $t\mapsto p_{A,B}(t)=\det(A+tB)$ .
- a) Montrer que si  $B \in M_n^{(1)}(\mathbb{R})$  alors  $p_{A,B}$  est une fonction polynomiale de degré inférieur ou égal à 1.
- **b)** Montrer que si  $B \in M_n^{(r)}(\mathbb{R})$  alors  $p_{A,B}$  est une fonction polynomiale de degré inférieur ou égal à r.
- c) On suppose que  $B \in M_n(\mathbb{R})$  est de rang  $r \in [1, n]$ . En utilisant la question 2, montrer que  $p_{A,B}$  est une fonction polynomiale de degré inférieur ou égal à r.
- d) On suppose à nouveau que B est de rang  $r \in [1, n]$ . Montrer qu'il est possible de choisir la matrice A de sorte que  $p_{A,B}$  soit de degré exactement r.

#### Seconde partie

#### Conservation du rang, conservation du déterminant

- **Q5.** Donner un exemple de symétrie vectorielle de  $M_n(\mathbb{R})$ , autre que l'identité, qui conserve le rang et conserve le déterminant.
- **Q6.** Soient  $A \in GL_n(\mathbb{R})$  et  $\varphi_A : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ ,  $X \mapsto \varphi_A(X) = AXA^{-1}$ . Montrer que  $\varphi_A$  est un automorphisme de  $M_n(\mathbb{R})$  qui conserve le rang et le déterminant.
- **Q7.** Montrer que si f est un endomorphisme de  $M_n(\mathbb{R})$  qui conserve le rang alors f est bijectif.
- Q8. Dans cette question uniquement, on considère l'endomorphisme

$$f: M_n(\mathbb{R}) \to M_n(\mathbb{R}), \ X \mapsto f(X) = X + \operatorname{tr}(X)I_n,$$

où tr désigne la fonction trace.

- a) Déterminer le noyau de f.
- b) Que penser de la réciproque de l'affirmation de la question 7?
- **Q9.** Soit  $A \in M_n(\mathbb{R})$  et  $g_A : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ ,  $X \mapsto g_A(X) = AX$ .
- a) Montrer que l'endomorphisme  $g_A$  est bijectif si, et seulement si, A est inversible.
- b) Donner une condition nécessaire et suffisante portant sur A pour que  $g_A$  conserve le rang puis, pour que  $g_A$  conserve le déterminant.
- **Q10.** Soit f un endomorphisme de  $M_n(\mathbb{R})$  qui conserve le déterminant.
- a) On se donne une matrice non nulle  $X \in M_n(\mathbb{R})$ . Montrer qu'il existe une matrice inversible  $Y \in M_n(\mathbb{R})$  telle que X + Y ne soit pas inversible.
- b) Déterminer le noyau de f et en déduire que f est bijective.
- c) Réciproquement, un automorphisme de  $M_n(\mathbb{R})$  conserve-t-il forcément le déterminant ?
- **Q11.** Montrer que si f est un endomorphisme de  $M_n(\mathbb{R})$  qui conserve le déterminant, alors il conserve le rang.

Indication : Si  $X \in M_n(\mathbb{R})$  est une matrice de rang  $r \in [1, n]$ , utiliser les résultats de la question 4 afin de comparer les degrés des fonctions polynômes  $p_{A,X}$  et  $p_{f(A),f(X)}$  pour des matrices A bien choisies.

# Problème 2

## Équations différentielles et séries entières

**Q1.** On pose 
$$H: \mathbb{R} \to \mathbb{R}$$
,  $x \mapsto H(x) = \sum_{p=0}^{+\infty} \frac{x^{2p}}{4^p (p!)^2}$ .

- a) Justifier l'existence de H(x) pour tout réel x.
- b) Montrer que H est de classe  $\mathcal{C}^{\infty}$  sur  $\mathbb{R}$  et à valeurs strictement positives.
- c) Établir que H est solution sur  $\mathbb{R}$  de l'équation différentielle :

$$(E_0): xy'' + y' - xy = 0.$$

- **Q2.** On se propose de résoudre l'équation différentielle  $(E_0)$  sur l'intervalle  $I=]0,+\infty[$ .
- a) Soient  $y: I \to \mathbb{R}$  une fonction de classe  $C^2$  sur I et  $\lambda: I \to \mathbb{R}$  la fonction définie par :

$$\lambda(x) = \frac{y(x)}{H(x)}$$
 pour tout  $x > 0$ .

Montrer que y est solution de  $(E_0)$  sur I si, et seulement si, pour tout  $x \in I$ ,

$$xH(x)\lambda''(x) + (2xH'(x) + H(x))\lambda'(x) = 0.$$

b) Résoudre l'équation différentielle :

$$(E_1)$$
  $xH(x)z' + (2xH'(x) + H(x))z = 0$  d'inconnue  $z \in \mathcal{C}^1(I;\mathbb{R})$ ,

puis en déduire les solutions de  $(E_0)$  sur I qui seront exprimées à l'aide des fonctions H et

$$G: I \to \mathbb{R}, \ x \mapsto G(x) = \int_1^x \frac{dt}{tH(t)^2}.$$

- **Q3.** On considère désormais l'équation différentielle  $(E_2)$ : xy'' + y' xy = 2 dont l'inconnue y est une fonction à valeurs réelles.
- a) Soit  $y:]-R,R[\to\mathbb{R}$  une fonction développable en série entière sur  $]-R,R[\ (R>0)$  dont l'expression analytique est de la forme

$$y(x) = \sum_{n=0}^{+\infty} a_n x^n ,$$

- où les coefficients  $a_n$  sont réels. Montrer que y est solution de  $(E_2)$  sur ]-R,R[ si, et seulement si,  $a_1=2$  et, pour tout  $n\geq 2$ ,  $n^2a_n=a_{n-2}$ .
- b) En déduire les expressions de  $a_{2p}$  et de  $a_{2p+1}$  en fonction de  $p \in \mathbb{N}$ . Les réponses feront intervenir des factorielles.
- c) Calculer alors le rayon de convergence de la série entière  $\sum_{n\geq 0} a_n x^n$  et en déduire toutes les solutions de  $(E_2)$  qui sont développables en série entière au voisinage de 0.
- **Q4.** On considère la fonction  $f: \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto f(x) = \int_0^\pi e^{x \sin t} dt$ .
- a) Rappeler l'énoncé du théorème de dérivation sous le signe intégral.
- b) Montrer que f est de classe  $\mathcal{C}^1$  sur  $\mathbb{R}$ . On pourra commencer par considérer la restriction de f à l'intervalle [-a,a] où a est un réel strictement positif.
- c) Montrer que f est de classe  $C^2$  sur  $\mathbb{R}$ .
- **Q5.** Montrer que f est solution de  $(E_2)$  sur  $\mathbb{R}$ . Indication : on pourra effectuer une intégration par parties sur l'intégrale obtenue à partir de l'expression xf''(x) xf(x).
- **Q6.** Pour  $n \in \mathbb{N}$ , on pose  $W_n = \int_0^{\pi} \sin^n t \, dt$ .
- a) Rappeler l'énoncé du théorème d'intégration terme à terme (pour une série de fonctions).

- b) En déduire que f est développable en série entière sur  $\mathbb R$  et exprimer les coefficients de ce développement à l'aide des nombres  $W_n$ .
- c) En utilisant les résultats de la question 3, donner l'expression des intégrales  $W_n$  en fonction de  $n \in \mathbb{N}$  (la réponse distinguera deux cas selon la parité de n).

